Serveur d'exploration Thomatine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Global radiation damage: temperature dependence, time dependence and how to outrun it.

Identifieur interne : 000193 ( Main/Exploration ); précédent : 000192; suivant : 000194

Global radiation damage: temperature dependence, time dependence and how to outrun it.

Auteurs : Matthew Warkentin [États-Unis] ; Jesse B. Hopkins ; Ryan Badeau ; Anne M. Mulichak ; Lisa J. Keefe ; Robert E. Thorne

Source :

RBID : pubmed:23254651

Descripteurs français

English descriptors

Abstract

A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.

DOI: 10.1107/S0909049512048303
PubMed: 23254651
PubMed Central: PMC3526918


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Global radiation damage: temperature dependence, time dependence and how to outrun it.</title>
<author>
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Physics Department, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hopkins, Jesse B" sort="Hopkins, Jesse B" uniqKey="Hopkins J" first="Jesse B" last="Hopkins">Jesse B. Hopkins</name>
</author>
<author>
<name sortKey="Badeau, Ryan" sort="Badeau, Ryan" uniqKey="Badeau R" first="Ryan" last="Badeau">Ryan Badeau</name>
</author>
<author>
<name sortKey="Mulichak, Anne M" sort="Mulichak, Anne M" uniqKey="Mulichak A" first="Anne M" last="Mulichak">Anne M. Mulichak</name>
</author>
<author>
<name sortKey="Keefe, Lisa J" sort="Keefe, Lisa J" uniqKey="Keefe L" first="Lisa J" last="Keefe">Lisa J. Keefe</name>
</author>
<author>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23254651</idno>
<idno type="pmid">23254651</idno>
<idno type="doi">10.1107/S0909049512048303</idno>
<idno type="pmc">PMC3526918</idno>
<idno type="wicri:Area/Main/Corpus">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000203</idno>
<idno type="wicri:Area/Main/Curation">000203</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000203</idno>
<idno type="wicri:Area/Main/Exploration">000203</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Global radiation damage: temperature dependence, time dependence and how to outrun it.</title>
<author>
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
<affiliation wicri:level="4">
<nlm:affiliation>Physics Department, Cornell University, Ithaca, NY 14853, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Physics Department, Cornell University, Ithaca, NY 14853</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
<settlement type="city">Ithaca (New York)</settlement>
</placeName>
<orgName type="university">Université Cornell</orgName>
</affiliation>
</author>
<author>
<name sortKey="Hopkins, Jesse B" sort="Hopkins, Jesse B" uniqKey="Hopkins J" first="Jesse B" last="Hopkins">Jesse B. Hopkins</name>
</author>
<author>
<name sortKey="Badeau, Ryan" sort="Badeau, Ryan" uniqKey="Badeau R" first="Ryan" last="Badeau">Ryan Badeau</name>
</author>
<author>
<name sortKey="Mulichak, Anne M" sort="Mulichak, Anne M" uniqKey="Mulichak A" first="Anne M" last="Mulichak">Anne M. Mulichak</name>
</author>
<author>
<name sortKey="Keefe, Lisa J" sort="Keefe, Lisa J" uniqKey="Keefe L" first="Lisa J" last="Keefe">Lisa J. Keefe</name>
</author>
<author>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</author>
</analytic>
<series>
<title level="j">Journal of synchrotron radiation</title>
<idno type="eISSN">1600-5775</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Crystallization (MeSH)</term>
<term>Crystallography, X-Ray (MeSH)</term>
<term>Electromagnetic Radiation (MeSH)</term>
<term>Plant Proteins (radiation effects)</term>
<term>Proteins (chemistry)</term>
<term>Proteins (radiation effects)</term>
<term>Temperature (MeSH)</term>
<term>Time Factors (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cristallisation (MeSH)</term>
<term>Cristallographie aux rayons X (MeSH)</term>
<term>Facteurs temps (MeSH)</term>
<term>Protéines (composition chimique)</term>
<term>Protéines (effets des radiations)</term>
<term>Protéines végétales (effets des radiations)</term>
<term>Rayonnements électromagnétiques (MeSH)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="radiation effects" xml:lang="en">
<term>Plant Proteins</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Protéines</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Crystallization</term>
<term>Crystallography, X-Ray</term>
<term>Electromagnetic Radiation</term>
<term>Temperature</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cristallisation</term>
<term>Cristallographie aux rayons X</term>
<term>Facteurs temps</term>
<term>Rayonnements électromagnétiques</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23254651</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>06</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1600-5775</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>20</Volume>
<Issue>Pt 1</Issue>
<PubDate>
<Year>2013</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Journal of synchrotron radiation</Title>
<ISOAbbreviation>J Synchrotron Radiat</ISOAbbreviation>
</Journal>
<ArticleTitle>Global radiation damage: temperature dependence, time dependence and how to outrun it.</ArticleTitle>
<Pagination>
<MedlinePgn>7-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1107/S0909049512048303</ELocationID>
<Abstract>
<AbstractText>A series of studies that provide a consistent and illuminating picture of global radiation damage to protein crystals, especially at temperatures above ∼200 K, are described. The radiation sensitivity shows a transition near 200 K, above which it appears to be limited by solvent-coupled diffusive processes. Consistent with this interpretation, a component of global damage proceeds on timescales of several minutes at 180 K, decreasing to seconds near room temperature. As a result, data collection times of order 1 s allow up to half of global damage to be outrun at 260 K. Much larger damage reductions near room temperature should be feasible using larger dose rates delivered using microfocused beams, enabling a significant expansion of structural studies of proteins under more nearly native conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Warkentin</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Physics Department, Cornell University, Ithaca, NY 14853, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hopkins</LastName>
<ForeName>Jesse B</ForeName>
<Initials>JB</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Badeau</LastName>
<ForeName>Ryan</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mulichak</LastName>
<ForeName>Anne M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Keefe</LastName>
<ForeName>Lisa J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Thorne</LastName>
<ForeName>Robert E</ForeName>
<Initials>RE</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P41 RR001646</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 GM065981</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM065981</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR-01646</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>11</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Synchrotron Radiat</MedlineTA>
<NlmUniqueID>9888878</NlmUniqueID>
<ISSNLinking>0909-0495</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53850-34-3</RegistryNumber>
<NameOfSubstance UI="C003427">thaumatin protein, plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003460" MajorTopicYN="N">Crystallization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018360" MajorTopicYN="N">Crystallography, X-Ray</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060733" MajorTopicYN="N">Electromagnetic Radiation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>11</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>12</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>6</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23254651</ArticleId>
<ArticleId IdType="pii">S0909049512048303</ArticleId>
<ArticleId IdType="doi">10.1107/S0909049512048303</ArticleId>
<ArticleId IdType="pmc">PMC3526918</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1995 Jan 1;51(Pt 1):98-109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):163-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Rev. 2001 Jun;101(6):1569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11709992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys Chem. 2003 Sep;105(2-3):667-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14499926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:519-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756501</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Feb;68(Pt 2):124-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22281741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Sep;67(Pt 9):792-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21904032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol. 1996 Jun;3(6):425-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8807873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Crystallogr. 2009 Oct 1;42(Pt 5):944-952</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19798409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jun 13;45(23):7023-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Physiol. 1986;48:657-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3010829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):339-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2011 May;18(Pt 3):346-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Phys Chem B. 2008 Feb 14;112(6):1571-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Funct Genomics. 2010 Mar;11(1):85-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20012211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6127-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21444772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 May;68(Pt 5):505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22525748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 27;108(39):16247-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21918110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2000 Sep 1;7(Pt 5):313-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16609214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1999 Nov 15;7(11):1311-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10574788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):299-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur Biophys J. 2001 Sep;30(5):319-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11592689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2010 Jul;19(7):1420-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20499387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Sep;62(Pt 9):1030-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16929104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2009 Oct;65(Pt 10):1107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19770508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2003 Jan;11(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12517336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1992 Mar 10;31(9):2469-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1547232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Oct;66(Pt 10):1092-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20944242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Sep;68(Pt 9):1108-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22948911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):393-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20382993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 20;300(5627):1944-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12817148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 1994 Dec 15;2(12):1135-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7704524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Oct 17;419(6908):743-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12384704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):318-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):191-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2010 Dec;66(Pt 12):1287-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21123868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Dec;15(12):1531-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 1999 Mar;55(Pt 3):610-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10089457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2011 May;18(Pt 3):329-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21525640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):257-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 3;462(7273):669-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19956261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 17;102(20):7145-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15870207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Apr 14;312(5771):208-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16614206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2001 Apr;57(Pt 4):566-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11264586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Dec 6;450(7171):913-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18026087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2003 Oct;13(5):545-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14568608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2007 Jan;14(Pt 1):73-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17211073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2001 Oct;10(10):1953-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11567086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Struct Biol. 2004 Sep;147(3):235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15450293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biophys Biophys Chem. 1989;18:309-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2660828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):4912-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16549763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Nov 1;9(Pt 6):342-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Sep 25;98(20):11242-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11572978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2002 Jul 1;9(Pt 4):198-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2009 Mar;16(Pt 2):133-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19240325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1992 Jun 4;357(6377):423-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1463484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2006 Feb;62(Pt 2):125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16421442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2003 Apr;59(Pt 4):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12657789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 Feb 3;470(7332):73-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Synchrotron Radiat. 2005 May;12(Pt 3):310-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15840916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1976 Sep 25;106(3):889-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">978739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Chem Biol. 2010 Oct;14(5):644-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20729130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2011 Oct;67(Pt 10):881-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2002 Dec;58(Pt 12):2060-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12454465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Crystallogr D Biol Crystallogr. 2012 Jul;68(Pt 7):810-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22751666</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>État de New York</li>
</region>
<settlement>
<li>Ithaca (New York)</li>
</settlement>
<orgName>
<li>Université Cornell</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Badeau, Ryan" sort="Badeau, Ryan" uniqKey="Badeau R" first="Ryan" last="Badeau">Ryan Badeau</name>
<name sortKey="Hopkins, Jesse B" sort="Hopkins, Jesse B" uniqKey="Hopkins J" first="Jesse B" last="Hopkins">Jesse B. Hopkins</name>
<name sortKey="Keefe, Lisa J" sort="Keefe, Lisa J" uniqKey="Keefe L" first="Lisa J" last="Keefe">Lisa J. Keefe</name>
<name sortKey="Mulichak, Anne M" sort="Mulichak, Anne M" uniqKey="Mulichak A" first="Anne M" last="Mulichak">Anne M. Mulichak</name>
<name sortKey="Thorne, Robert E" sort="Thorne, Robert E" uniqKey="Thorne R" first="Robert E" last="Thorne">Robert E. Thorne</name>
</noCountry>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Warkentin, Matthew" sort="Warkentin, Matthew" uniqKey="Warkentin M" first="Matthew" last="Warkentin">Matthew Warkentin</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/ThaumatinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000193 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000193 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    ThaumatinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23254651
   |texte=   Global radiation damage: temperature dependence, time dependence and how to outrun it.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23254651" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a ThaumatinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 3 10:25:16 2020. Site generation: Tue Nov 3 10:26:24 2020